DOI: http://dx.doi.org/10.18782/2320-7051.5182

ISSN: 2320 - 7051 Int. J. Pure App. Biosci. 6 (1): 678-693 (2018)

Variability in the Population of *Bipolaris sorokiniana* Infecting Wheat

P. E. Pradeep^{*} and I. K. Kalappanavar

Department of Plant Pathology, University of Agricultural Sciences, Dharwad-580 005, India *Corresponding Author E-mail: pradeep4827@gmail.com Received: 10.07.2017 | Revised: 18.08.2017 | Accepted: 26.08.2017

ABSTRACT

The leaves showing typical symptoms were collected from major wheat growing areas spread over the different agro-ecological zones of India during rabi 2013-14. Cultural characters of 24 isolates of B. sorokiniana studied on PDA revealed lot of variation. Eight (SB-2, 4, 6, 7, 8, 16, 23 and 24) showed excellent growth, 11 (SB-1, 3, 5, 9, 10, 11, 13, 14, 15, 21 and 22) revealed moderate growth and five (SB- 12, 17, 18, 19 and 20) exhibited poor growth. Five different types of colours of isolates were found on PDA. The frequency of the white (29.2 %), colony type was maximum while both dark gray and light brownish gray colour showed frequency of 25.0 per cent in the population. Light gray displayed 16.7 per cent and lowest frequency (4.2 %) observed was black type. Among these dark gray cultures sporulate profusely and had appressed cottony growth. The whitish type had less or no sporulation. The size of the conidia of 21 isolates varied from 15.3-126.0 µm X 6.3-36.1 µm with 1-6 septa, colour varies from dark brown to olivaceous, Ovate to elliptical in shape and showed germination pattern was by unipolar or bipolar. Sporulation was not observed in the three isolates (SB-17, 19 and 20). On the basis of aggressiveness of the 12 isolates on differentials showing varied response to disease, the isolates of B. sorokiniana were classified into three groups as Highly virulent that comprises three isolates viz., SB-8 (Dharwad), SB-16 (Varanasi (V-2)) and SB-10 (Pantnagar), Moderately virulent that includes five isolates viz., SB-4 (Bijapur), SB-5 (Kamatnur) SB-7 (Arabhavi (A-2)), SB-18 (Indore) and SB-22 (Wellington (W-2)), Least virulent that consist of three isolates viz., SB-9 (Pune), SB-14 (Varanasi (V-1)) and SB-20 (Jammu).

Key words: Wheat, B. sorokiniana, agro-ecological zones of India, Cultural characters, PDA

INTRODUCTION

Bipolaris sorokiniana (Sacc.) Shoem. is the causal agent of common root rot, spot blotch, seedling blight, head blight, black point of wheat and barley. B. sorokiniana develops dark brown necrotic lesions on roots, crown, leaves and lower leaf sheaths. It develops oval to elongated light to dark brown blotches on

leaf blades and sheaths, when it severely infect the roots and crown portions, the plants dry out without producing any seed. Similarly infected spikelets under favourable conditions produces shriveled grains. Grain vield reductions due to spot blotch are variable but are of great significance in warmer areas of South Asia^{18, 19}.

Cite this article: Pradeep, P.E. and Kalappanavar, I.K., Variability in the Population of Bipolaris sorokiniana Infecting Wheat, Int. J. Pure App. Biosci. 6(1): 678-693 (2018). doi: http://dx.doi.org/10.18782/2320-7051.5182

Pradeep and Kalappanavar

ISSN: 2320 - 7051

At present, spot blotch of wheat is a major disease at national level in India and its frequency is highest in north eastern plains zone amongst six agro climatic zones due to prevalence of hot and humid weather conditions. Management of this disease through host resistance has become a prime concern. Managing any pathogen through host requires a comprehensive resistance knowledge of prevalent races of the target pathogen, which can be achieved by exploring the virulence diversity as well as the genetic diversity of host⁶. Previously its generic name Bipolaris having fusoid, straight or curved conidia with bipolar germination and characterized by thick-walled, elliptical conidia (60-120um x 12-20 um) with 4-8 septa. The colony of the fungus has interwoven hyphae as a loose cottony mass white or light to grey color depending on the isolates²⁰. To find out the difference in aggressiveness/ virulence in the pathogenic population on different wheat genotypes to categorize the isolates into least to highly virulent, the quantification of host responses is prerequisite. In the present a study aggressiveness/ virulence of the isolates was characterized on the basis of disease severity observed on 12 wheat genotypes. The present study highlights the cultural, morphological and pathological variability within the B. sorokiniana populations of different agroecological zones of India.

MATERIAL AND METHODS

Collection of isolates

The leaves showing typical symptoms of spot blotch were collected from major wheat growing areas spread over different agroecological zones *viz.*, North Western Plains Zone (NWPZ), North Eastern Plains Zone (NEPZ), Central Zone (CZ), Peninsular Zone (PZ), Northern Hills Zone (NHZ) and Southern Hills zone (SHZ) of India during rabi 2013-14 (Table 1). The symptoms observed in these samples were also studied and recorded systematically to find out the variation if any. The presence of *B. sorokiniana* was confirmed by examining infected plant parts under a microscope and by culturing the samples and **Copyright © Jan.-Feb., 2018; IJPAB**

with the characteristic comparing them features of the fungus. The pathogen was isolated on Potato Dextrose Agar (PDA) and isolation¹². conidial purified by mono Monoconidial culture maintained from the isolates of different location were accordingly designated for further studies (Table 1) and stored in a refrigerator at 5 °C on PDA. Here after, the monoconidial culture is referred as the isolate. Twenty four monoconidial isolates of B. sorokiniana representing six agroecological zone cultured on PDA were used for cultural and pathological studies. Multiple isolates collected from Arabhavi (SB- 3 and SB-7) Varanasi (SB-14 and SB-16) and Wellingtone (SB-21, 22, 23 & 24) and was considered as they showed variation in symptoms of disease.

Growth of isolates on PDA

The cultural characters of 24 isolates of B. sorokiniana were studied on PDA. These plates were inoculated at the centre with fungal discs of 10mm diameter of each isolate from the periphery of 10 day old pure culture and incubated at 26 + 1 °C for a period till full growth appeared in any one of the isolate or eight days whichever is early. The colony diameter was recorded by averaging the radial growth of the colony in two directions for each Colony characters viz., colony plate. morphology (colour, growth behavior), radial growth, shape and sporulation were recorded. Photographs were taken to show and to compare the growth characters of the pathogen on PDA. The radial growth was recorded and analyzed statistically by using completely randomized design. Colour of the colony was recorded with help of Munsell's soil colour chart¹³.Spore production on 15 day old culture of B. sorokiniana was recorded by excising 10 mm diameter colony area using cork borer. It was shaken well, after mixing in 1 ml sterile distilled water, to dislodge the conidia. The average number of spores per microscopic field was counted.

Conidia morphology

The conidial shape, size, septation and colour was noted and measured according to Sivanesan and Holliday ²². Microphotographs

were taken to show the spore morphology clearly.

Pathogenic variability studies

This study was conducted at MARS, UAS, Dharwad under glass house conditions with 11 isolates (SB-4, 5, 7, 8, 9, 10, 14, 16, 18, 20 and 22) selected based on isolate representing six agro ecological zones.

Sowing of different genotypes

Twelve wheat genotypes (six durum, five dicoccum and one bread wheat) selected based on criteria of locally popular genotypes and also showing clear cut reactions of spot blotch symptoms to *B. sorokiniana* and were selected as standard differentials. A mixture of sandy loam and vermi-compost in the ratio of 2:1 was prepared for sowing of differentials. The mixture was then well sieved and filled in 4" earthen pots. Ten healthy seeds of each differential treated with Vitavax power[®] (@ 2 g/kg seed) were sown in each pot.

Inoculation and disease score

Seedlings inoculation

One set of each of these genotypes was inoculated separately in the glasshouse sown in earthen pots with conidial suspension of 12 day old culture of each isolate (grown on sterilized sorghum grains) in sterile distilled water having aqueous suspension containing 8-10 spores per microscopic field under $10x^{16}$. The inoculation was done uniformly using hand atomizer on 15 day old seedling. Proper control was maintained by spraying plants with sterile distilled water and covered with polythene bags covered for 24 hrs to maintain high relative humidity. Later bag was removed. The seedlings received only day light. The experiment was replicated twice.

Disease severity under glass house conditions

Observations on disease severity was recorded on infected plants seven days after inoculation, when lesions appeared to reached maximum size, using a scale of $0-5^1$.

Disease score	Descriptions of severity levels	Reaction
0	Free of spots	Immune (I)
1	Necrotic spots without chlorosis up to 5 per cent of the leaf area involved	Resistant (R)
2	Necrotic spots with light chlorosis, 6-20 per cent of the leaf area involved	Moderately resistant (MR)
3	Necrotic spots with pronounced chlorosis, 21-40 per cent of the leaf area involved	Moderately susceptible (MS)
4	Necrotic spots with pronounced chlorosis 41-60 per cent of the leaf area involved	Susceptible (S)
5	Spots merging, more than 60 per cent of the leaf area involved	Highly susceptible (HS)

RESULTS

The symptoms on diseased parts collected from various places are presented in Table 2 and Plate 1.Five different types of colours of isolates were found on PDA (Table 3 and Plate 2). Out of 24, seven isolates exhibited white colour colony (SB-12, 13, 16, 17, 18, 19 and 20), six isolates *viz.*,SB-1, 3, 8, 10, 14 and 24 showed dark gray in colour, light brownish gray colour was noticed in six isolates (SB-9, 11, 15, 21, 22 and 23), four isolates (SB-2, 5, 6 **Copyright © Jan.-Feb., 2018; IJPAB** and 7) revealed light gray colour while, SB-4 isolate exhibited black colony colour. The growth behaviour of the colony of different isolates varied from appressed cottony growth with white buttons in the isolates SB-1, 3, 8, 10 and 16, appressed cottony growth without white buttons (SB-9, 14, 20, 21, 23 and 24), cottony growth (SB-5, 6, 7, 11, 15, 18 and 22), Fluffy growth (SB-2, 4, and 13) and suppressed growth (SB-12, 17 and 19). The shape of the colony of different isolates varied **680**

ISSN: 2320 - 7051

from circular with aerial mycelium at the centre (SB-2, 5, 6, 7, 9 and 15), circular without aerial mycelium (SB-13, 14, 16, 21, 22, 23 and 24), semi-circular with aerial mycelium at the centre (SB-1, 3 and 4), semicircular without aerial mycelium (SB-17, 18 and 20), circular with zonation along boarder was recorded in SB-11, irregular with aerial mycelium at the centre (SB-8, 12 and 19) while irregular periphery was noticed in SB-10 (Table 3). The results revealed that there was significant difference in mycelia growth among the isolates. The maximum and minimum colony diameter of 89.5 and 39.3 mm respectively was recorded for the isolate SB-16 and SB-17 (Table 3), indicating that isolate SB-16 was the fastest growing attaining the maximum size in eight days on PDA with white colour, appressed cottony growth having white buttons and circular in periphery. This was followed by SB-7 (85.8 mm), SB-23 (83.5 mm), SB-2 and 4 (82.7 mm), SB-8 (80.2 mm), SB-6 (78.8 mm) and were significantly on par with each other. The least radial growth of 39.3 mm was recorded in SB-17 followed by SB-12 (44.0 mm), SB-19 (44.8 mm), SB-18 (46.2 mm), and SB-20 (49.8 mm) were statistically similar. Based on the varying level of radial growth 24 isolates can be grouped in to three categories (Table 3).

Sporulation

Among the 24 isolates (Table 3), maximum sporulation was observed in SB-14 and SB-24 (>40 conidia/ microscopic field at 100X) followed by SB-10 (20-40 conidia/ microscopic field at 100X). Sporulation was not observed in the isolates SB-17, 19 and 20.

Conidial characters of the isolates

The size of the conidia of 21 isolates varied from 15.3-126.0 μ m X 6.3-36.1 μ m with 1-6 septa, colour varies from dark brown to olivaceous, Ovate to elliptical in shape and showed germination pattern was by unipolar or bipolar (Table 4 and Plate 3). The maximum length of conidia was observed in the isolate SB-4 (95.4 μ m) with 3-6 septa followed by SB-18 (86.7 μ m) SB-3 (74.8 μ m), SB-8 (70.3 μ m), with 3-4 septa and significantly superior over others however, SB-8 was on par with

SB-12 (62.6 µm) and SB-16 (57.8 µm). SB-3 and SB-12 were statistically similar. Isolate SB-18 (28.9 µm) recorded significantly higher width of conidia followed by SB-8 (27.9 µm), SB-3 (26.5 µm), SB-10 (24.0µm) and were on par with each other. Septal numbers was significantly greater in isolate SB-4 (4.5) subsequently by SB-3 (4.0) and were statistically similar (Table 4). The colour of the conidia varied from dark brown in SB-3 and SB-8, brown (SB-1, 2, 10, 14, 15 and 21), light brown (SB-4, 9, 11, 12, 16, 18, 22, 23, 24) and olivaceous (SB-5, 6, 7 and 13). The shape of the conidia was elliptical in all the isolates except in isolates SB-14 and SB-21 exhibited ovate in shape of conidia. The isolates, SB-4 and SB-10 showed only bipolar pattern of germination and rest all showed apart from bipolar, unipolar pattern of germination was also noticed (Table 4).

Pathogenic variability studies

The result presented in the table 5 revealed that genotype PDW-314 was uniformly resistant to all the isolates except to the isolate SB-16 (Varanasi (V-2)) where it was showed moderately susceptible disease response. Whereas, highly susceptible genotypes A-9-30-1 and Bijaga Yellow exhibited susceptible response to the isolates SB-8 (Dharwad) and SB-10 (Pantnagar). Apart from this, Bijaga Yellow showed susceptible reaction to the isolates **SB-18** (Indore) and **SB-22** (Wellington (W-2)).

Among the 11 isolates, SB-8 (Dharwad) and SB-10 (Pantnagar) were found highly virulent followed by SB-16 (Varanasi (V-2)) and others by considering the variable reaction pattern of isolates tested on differentials. These isolates can be grouped into three pathogenic groups namely, Highly virulent comprises three isolates that viz.,SB-8 (Dharwad), SB-16 (Varanasi (V-2)) and SB-10 (Pantnagar), Moderately virulent that includes five isolates viz.,SB-4 (Vijayapur), SB-5 (Kamatnur) SB-7 (Arabhavi (A-2)), SB-18 (Indore) and SB-22 (Wellington (W-2)), Least virulent that consist of three isolates viz., SB-9 (Pune), SB-14 (Varanasi (V-1)) and SB-20 (Jammu).

Pradeep and Kalappanavar	Int. J. Pure App. Biosci. 6 (1): 678-693 (2018)	ISSN: 2320 – 7051
Table 1: Characteristics	of <i>Bipolaris sorokiniana</i> isolates used in phenotypic	diversity analysis

Isolate code	Location	State	Host source	Collected from wheat species/ genotype	Plant portion used for isolation	Agro-ecological zone (AEZ)	
SB-1	Mangalagatti		Wheat	Triticum aestivum	Leaf		
SB-2	Mulmutla		Wheat	<i>T. durum /</i> Bijaga yellow	Leaf		
SB-3	Arabhavi		Wheat	T. durum	Leaf		
SB-4	Vijayapur	Karnataka	Wheat	T. aestivum	Neck		
SB-5	Kamatnur	Kamataka	Wheat	T. aestivum	Leaf	Peninsular Zone (PZ)	
SB-6	Ugar		Wheat	<i>T. dicoccum /</i> DDK 1029	Leaf		
SB-7	Arabhavi		Wheat	T. dicoccum	Leaf		
SB-8	Dharwad		Wheat	T. durum	Leaf		
SB-9	Pune	Maharashtra	Wheat	T. dicoccum	Leaf		
SB-10	Pantnagar	Uttarkhand	Barley	Hordeum vulgare	Leaf		
SB-11	Karnal	Haryana	Wheat	T. aestivum	Leaf	North Western	
SB-12	Delhi	New Delhi	Wheat	T. aestivum	Leaf	(NWPZ)	
SB-13	Ludhiana	Punjab	Wheat	T. aestivum	Leaf		
SB-14	Varanasi		Wheat	T. aestivum	Leaf	North Eastern	
SB-15	Kanpur	Uttar Pradesh	Wheat	T. aestivum	Leaf	Plains Zone	
SB-16	Varanasi		Wheat	T. durum	Leaf	(NEPZ)	
SB-17	Powerkheda	Madhya	Wheat	<i>T. aestivum /</i> HI 1544	Leaf	Central Zone	
SB-18	Indore	Pradesn	Wheat	T. durum	Leaf	(CZ)	
SB-19	Anand	Gujarat	Wheat	T. aestivum	Leaf		
SB-20	Jammu	Jammu & Kashmir	Wheat	T. aestivum	Leaf	Northern Hills zone (NHZ)	
SB-21	Wellington	Tamil Nadu	Wheat	T. dicoccum	Leaf		
SB-22	Wellington	Tamil Nadu	Wheat	T. aestivum	Leaf	Southern Hills	
SB-23	Wellington	Tamil Nadu	Wheat	T. durum	Leaf	Zone (SHZ)	
SB-24	Wellington	Tamil Nadu	Wheat	T. dicoccum	Leaf		

Table 2: Symptoms of Bipolaris sorokiniana on wheat from different agro-ecological zones of India

			0	
Isolate code	Location	Symptoms	State	Agro- ecological zone (AEZ)
SB-1	Mangalag atti	Spots are oval in shape with ashy gray centre surrounded by black margin without yellow halo. At advanced stage spots coalesce forming larger patches of dead areas on leaves.		
SB-2	Mulmutla	Small dark black in point spots observed on leaves, then turn to round to oval in shape with gray centre, later join together to form large elongated brown leaf blotches.		
SB-3	Arabhavi	Oval to elongated black spots with ashy gray centre.		
SB-4	Vijayapur	Black elongated patch seen on neck region of the ear head.		
SB-5	Kamatnur	Elongated light brown patches seen on leaves later on they form elongated blotches. Yellow halo was not seen	Karnataka	
SB-6	Ugar	Oval to elongated light brown patches seen with yellow halo seen on leaves. Later on coalesce forming large blotches with dark sporulation at the centre.		Peninsular Zone (PZ)
SB-7	Arabhavi	Initially irregular spots with gray centre surrounded by black margin seen on leaves that's looks like oily spots. The spots become enlarged in size and they didn't coalesce covering entire leaf area.		
SB-8	Dharwad	Elongated brown affected area seen on leaves without yellow halo then coalesce forming large dead areas on leaves.		
SB-9	Pune	Irregular spots with distinct zone seen. Light brown at the centre surrounded by dark brown margin. They enlarge in size without merge covering entire leaf area.	Maharasht ra	
SB-10	Pantnagar	Spots having black region at the centre surrounded by light brown margin at later stage they enlarge in size.	Uttarkhan d	
SB-11	Karnal	Initially black spots seen leaves later on they elongate irregularly with dark sporulation at the centre.	Haryana	North Western
SB-12	Delhi	Black spots seen on leaves later they exhibit distinct zonation, gray at the centre surrounded by black margin with slight yellow halo. Initially oval in shape and later becomes irregular.	New Delhi	Plains Zone (NWPZ)
SB-13	Ludhiana	Black pin point spots on leaves without yellow halo	Punjab	
SB-14	Varanasi	Black pin point spots on leaves without yellow halo	Uttar Pradesh	North Eastern Plains Zone (NEPZ)
SB-15	Kanpur	Black lesions seen on leaves later on enlarge in size.		
SB-16	Varanasi	Elongated light brown patches seen with yellow halo seen on leaves. Later on coalesce forming large blotches with dark sporulation at the centre.		
SB-17	Powerkhe da	Elongated light brown patches seen on leaves, later on they join together covering entire leaf area. Yellow halo not seen	Madhya Pradesh	Central Zone (CZ)
SB-18	Indore	Light brown spots seen on leaves. They coalesce to form large blotches		
SB-19	Anand	Black spots with yellow halo seen on leaves, later on they	Gujarat	

Pradeep a	Pradeep and Kalappanavar Int. J. Pure App. Biosci. 6 (1): 678-693 (2018) ISSN: 2320 - 7051							
		join together to form large blotches.						
SB-20	Jammu	Light brown spots are seen they elongate and join together covering entire leaf area. Yellow halo not seen	Jammu & Kashmir	Northern Hills zone (NHZ)				
SB-21	Wellingto n	Light brown patches seen on leaves they enlage in size and cover entire leaf area.	Tamil Nadu	Southern Hills Zone (SHZ)				
SB-22	Wellingto n	Dark brown patches seen on leaves without yellow halo, coalesce and cover entire leaf area.	Tamil Nadu					
SB-23	Wellingto n	Irregular dark patches with yellow halo seen then join together to form large patches covering entire leaf area.	Tamil Nadu					
SB-24	Wellingto n	Brown patches seen on leaves without yellow halo join and cover entire leaf area.	Tamil Nadu					

SB-1= Mangalagatti, SB-2= Mulmutla, SB-3= Arabhavi (A-1), SB-4= Vijayapur, SB-5= Kamatnur, SB-6= Ugar, SB-7= Arabhavi (A-2), SB-8= Dharwad, SB-9= Pune, SB-10= Pantnagar, SB-11= Karnal, SB-12= Delhi, SB-13= Ludhiana, SB-14= Varanasi (V-1), SB-15= Kanpur, SB-16= Varanasi (V-2), SB-17= Powerkheda, SB-18= Indore, SB-19= Anand, SB-20= Jammu, SB-21= Wellington (W-1), SB-22= Wellington (W-2), SB-23= Wellington (W-3), SB-24= Wellington (W-4).

Isolat	C	colony morphology		Colony	*
e	Color	Growth behavior	Shape	diameter	Sporul
	Color	Growth behavior		(mm)	ation
SB-1	Dark grav	Appressed cottony growth	Semi circular with aerial	57.2	+
	2 an gray	with white buttons	mycelium at centre	0,112	
SB-2	Light grav	Fluffy growth	Circular with aerial	82.7	+
55 2	Eight gruy		mycelium at centre	02.7	
SB-3	Dark grav	Appressed cottony growth	Semi circular with aerial	74 3	++
50 5	Dark gray	with white buttons	mycelium at centre	74.5	
SB /	Black	Fluffy growth	Semi circular with aerial	82.7	++
50-4	DIACK	Finity growin	mycelium at centre	02.7	ΤŢ
SD 5	Light grou	Cottony growth	Circular with aerial	70.0	
30-3	Light gray	Cottony growth	mycelium at centre	70.0	Ŧ
SD 6	Light group	Cottony growth	Circular with aerial	70.0	
3D-0	Light gray	Couony growin	mycelium at centre	/0.0	+
CD 7	T inlet anon	Cottone anosth	Circular with aerial	05.0	
2B-1	Light gray	Couony growin	mycelium at centre	85.8	+
SD 0	Dorle anou	Appressed cottony growth	Irregular with aerial	80.2	
3D-0	Dark gray	with white buttons	mycelium at centre	80.2	++
CD 0	Light	A	Circular with aerial	(7.0	
<u>88-9</u>	brownish	Appressed cottony growth	mycelium at centre	67.0	+
	gray	Approspad cottony growth			
SB-10	Dark gray	with white buttons	Irregular	53.2	+++
	Light				
SP 11	brownish	Cottony growth	Circular with zonation	64.5	
3D-11	gray	Cottony growth	along boarder	04.5	Ŧ
	gray		Irrogular with parial		
SB-12	White	Suppressed growth	mycelium	44.0	+
SP 13	White	Fluffy growth	Circular	57.2	1
SD-13 SP 14	Ville Dorle grou	Approved cottony growth	Circular	50.8	
SD-14	Light	Appressed cottony growth		09.8	++++
SD 15	Ligili	Cottony growth	Circular with aerial	62.9	
28-12	brownish Cottony growth m		mycelium at centre	02.8	+
	gray				

Table 3: Cultural variability of Bipolaris sorokiniana isolates grown on PDA

Pradeep and KalappanavarInt. J. Pure App. Biosci. 6 (1): 678-693 (2018)ISSN								
SB-16	White	Appressed cottony growth with white buttons	Circular	89.5	+			
SB-17	White	Suppressed growth	Semi circular	39.3	-			
SB-18	White	Cottony growth	Semi circular	46.2	+			
SB-19	White	Suppressed growth	Irregular with aerial mycelium	44.8	-			
SB-20	White	Appressed cottony growth	Semi circular	49.8	-			
SB-21	Light brownish gray	Appressed cottony growth	Circular	71.8	++			
SB-22	Light brownish gray	Cottony growth	Circular	60.7	++			
SB-23	Light brownish gray	Appressed cottony growth	Circular	83.5	+			
SB-24	Dark gray	Appressed cottony growth	Circular	76.0	++++			
S.Em. ±	·	·	·	3.2				
C.D. (p:	=0.01)			12.1				

Colony	diameter (mm)	* Spo	orulation	Conidia /microscopic field (100X)
76-90	Excellent growth	++++	Excellent	>40
		+++	Good	21-40
50-75	Moderate growth	++	Fair	6-20
	-	+	Poor	<5
<50	Poor growth	-	Nil	0

SB-1= Mangalagatti, SB-2= Mulmutla, SB-3= Arabhavi (A-1), SB-4= Vijayapur, SB-5= Kamatnur, SB-6= Ugar, SB-7= Arabhavi (A-2), SB-8= Dharwad, SB-9= Pune, SB-10= Pantnagar, SB-11= Karnal, SB-12= Delhi, SB-13= Ludhiana, SB-14= Varanasi (V-1), SB-15= Kanpur, SB-16= Varanasi (V-2), SB-17= Powerkheda, SB-18= Indore, SB-19= Anand, SB-20= Jammu, SB-21= Wellington (W-1), SB-22= Wellington (W-2), SB-23= Wellington (W-3), SB-24= Wellington (W-4).

Table 4: Variation in conidia	l characteristics of different	t isolates of <i>Bipolaris sorokiniana</i>
-------------------------------	--------------------------------	--

		Conidial characters									
Isolate	Length	(µm)	Width	(μm)	No. a	of septa	Colour	Shana	Germination		
	Range	Average	Range	Average	Range	Average	Colour	зпаре	pattern		
SB-1	29.5-68.3	48.9	15.3-25.3	20.3	2-4	3.0	Brown	Elliptical	Unipolar/Bipolar		
SB-2	28.1-50.6	39.4	11.9-16.5	14.2	2-3	2.5	Brown	Elliptical	Unipolar/Bipolar		
SB-3	64.7-84.9	74.8	21.4-31.5	26.5	3-5	4.0	Dark brown	Elliptical	Unipolar/Bipolar		
SB-4	64.7-126.0	95.4	13.7-21.7	17.7	3-6	4.5	Light brown	Elliptical	Bipolar		
SB-5	40.1-50.5	45.3	10.5-15.6	13.1	3-4	3.5	Olivaceous	Elliptical	Unipolar/Bipolar		
SB-6	35.5-40.2	37.9	10.2-15.9	13.1	3-4	3.5	Olivaceous	Elliptical	Unipolar/Bipolar		
SB-7	35.6-41.3	38.5	10.5-20.6	15.6	3-4	3.5	Olivaceous	Elliptical	Unipolar/Bipolar		
SB-8	39.6-101.0	70.3	19.6-36.1	27.9	3-4	3.5	Dark brown	Elliptical	Unipolar/Bipolar		
SB-9	30.2-41.0	35.6	10.0-15.5	12.8	3-4	3.5	Light brown	Elliptical	Unipolar/Bipolar		
SB-10	37.5-68.8	53.2	18.7-29.3	24.0	2-4	3.0	Brown	Elliptical	Bipolar		
SB-11	21.4-41.0	31.2	11.9-20.9	16.4	2-3	2.5	Light brown	Elliptical	Unipolar/Bipolar		
SB-12	55.5-69.7	62.6	20.4-25.5	23.0	2-3	2.5	Light brown	Elliptical	Unipolar/Bipolar		
SB-13	45.0-50.0	47.5	10.6-15.4	13.0	3-4	3.5	Olivaceous	Elliptical	Unipolar/Bipolar		
SB-14	15.3-45.2	30.3	11.8-17.8	14.8	1-3	2.0	Brown	Ovate	Unipolar/Bipolar		
SB-15	30.5-36.4	33.5	12.9-14.7	13.8	1-2	1.5	Brown	Elliptical	Unipolar/Bipolar		
SB-16	57.1-58.4	57.8	21.4-24.3	22.9	3-4	3.5	Light brown	Elliptical	Unipolar/Bipolar		
SB-18	80.0-93.4	86.7	25.3-32.5	28.9	3-4	3.5	Light brown	Elliptical	Unipolar/Bipolar		
SB-21	25.2-54.0	39.6	14.4-24.8	19.6	1-2	1.5	Brown	Ovate	Unipolar/Bipolar		

Pradeep a	nd Kalappa	anavar	Int. J. P	ure App. 1	Biosci. 6	(1): 678-6	93 (2018)	IS	SSN: 2320 – 7051
SB 22	22 1 57 9		05130		23	25	Light	Elliptical	Unipolar/Bipolar
3D- 22	22.4-37.9	40.2	9.5-13.0	11.3	2-3	2.3	Brown		
SD 22	45 0 50 1		10 / 15 6		2.4	2.5	Light	Elliptical	Unipolar/Bipolar
30-23	45.0-50.1	47.6	10.4-13.0	13.0	3-4	3.3	Brown		
SP 24	22 / 18 /		62140		1.2	15	Light	Elliptical	Unipolar/Bipolar
3D-24	23.4-46.4	35.9	0.3-14.9	10.6	1-2	1.5	Brown		
S.Em. ±		4.0		1.2		0.2			
C.D.						0.7			
(p=0.01)		16.1		5.0					

SB-1= Mangalagatti, SB-2= Mulmutla, SB-3= Arabhavi (A-1), SB-4= Vijayapur, SB-5= Kamatnur, SB-6= Ugar, SB-7= Arabhavi (A-2), SB-8= Dharwad, SB-9= Pune, SB-10= Pantnagar, SB-11= Karnal, SB-12= Delhi, SB-13= Ludhiana, SB-14= Varanasi (V-1), SB-15= Kanpur, SB-16= Varanasi (V-2), SB-17= Powerkheda, SB-18= Indore, SB-19= Anand, SB-20= Jammu, SB-21= Wellington (W-1), SB-22= Wellington (W-2), SB-23= Wellington (W-3), SB-24= Wellington (W-4). *SB-17, 19 and 20 showed no spores on PDA.

Table 5: Disease response of different isolates of *B. sorokiniana* based on wheat genotypes/ differentials

Wheat genotype /differential		Disease response of isolates									
	SB-4	SB-5	SB-7	SB-8	SB-9	SB-10	SB-14	SB-16	SB-18	SB-20	SB-22
B. Yellow (DW)	MR	MR	MR	HS	R	HS	R	MR	MS	MR	MS
NP 200 (DIC)	R	R	MR	S	R	S	R	MS	Ι	Ι	MR
A-9-30-1 (DW)	MR	R	MR	HS	R	HS	Ι	MR	MR	MR	R
UAS 415 (DW)	MS	MR	MS	MS	MR	MS	R	R	MR	MS	R
DDK 1025 (DIC)	MS	R	MR	S	R	S	MR	S	MR	R	Ι
DDK 1029 (DIC)	R	MS	MR	MS	R	MS	MR	MS	MS	Ι	MS
DDK 1009 (DIC)	R	R	MS	MS	R	MS	R	MS	R	MR	S
DWR 2006 (DW)	Ι	MS	MS	MS	R	MS	R	MS	R	Ι	R
0.3% EMS DDK 1001 (DIC)	R	MS	MR	MS	MR	MS	MS	S	MS	R	Ι
PDW 314(DW)	R	R	R	MR	Ι	MR	R	MS	MR	Ι	Ι
UAS 448(DW)	R	MR	R	S	Ι	S	R	MS	R	R	MR
DWR 162 (BW)	MS	MR	MS	S	R	S	R	MR	R	R	R

Infection index	% leaf area infected	Disease response
0	0	Immune (I)
1	<5	Resistant (R)
2	6-20	Moderately Resistant (MR)
3	21-40	Moderately Susceptible (MS)
4	41-60	Susceptible (S)
5	>60	Highly Susceptible (HS)

SB-4= Vijayapur, SB-5= Kamatnur, SB-7= Arabhavi (A-2), SB-8= Dharwad, SB-9= Pune, SB-10= Pantnagar, SB-14= Varanasi (V-1), SB-16= Varanasi (V-2), SB-18= Indore, SB-20= Jammu, SB-22= Wellington (W-2), DW= Durum Wheat, BW= Bread Wheat, DIC= Dicoccum Wheat.

DISCUSSION

The mechanisms involved in the variability include heterokaryosis, which occurs chiefly through the anastomosis between adjacent hyphae, enables the parasexual cycle, which is the main source of genetic diversity in fungi with asexual reproduction⁷. Another possible cause of variability in spot blotch pathogen suggested to be the variable was rearrangement of one to six nuclei per cell⁵. This diversity is one cause of the infective phytopathogenic success of fungi in overcoming host resistance⁸. Five different types of colours of isolates were found on PDA (Table 3). This confirms the findings of Jaiswal et al.¹¹ studied monoconidial cultures of B. sorokiniana isolated from wheat-growing regions in India and showed high morphological variability between the isolates, which formed distinct morphological groups. The frequency of the white (29.2 %), colony type was maximum while both dark gray and light brownish gray colour showed frequency of 25.0 per cent in the population. light gray displayed 16.7 per cent and lowest frequency (4.2 %) observed was black type. The results are in accordance with Aggarwal et al.³ reported the frequency of the dull white/greenish black colony type was maximum (38.83 %), while both black, suppressed type and white fluffy type colonies showed minimum frequency (11.65 %) in the population studied. Among these, dark grav cultures sporulate profusely and had appressed cottony growth. The whitish type had less or no sporulation because of inability to sporulate in PDA or may be due to some other incubation environmental factors like temperature. The dark coloured colony showed a strong correlation with aggressiveness of the pathogen as Chand et al.5 studied the variability in natural populations of the spot (*B*. blotch pathogen sorokiniana) and classified the isolates in to five groups on the basis of colony morphology and reported black type in the natural population were of most aggressive and was identified as the epidemic population as compared to the white coloured having very few conidia. In this study,

Copyright © Jan.-Feb., 2018; IJPAB

ISSN: 2320 – 7051 morphological traits (colour, growth behaviour, and sporulation) were noted to be directly correlated with disease causing ability. The black clones, which displayed greater sporulation and growth, possessed highest disease-causing ability. Morphological characters of conidia and number of septa of 21 isolates were studied for identifying the fungus and to know the existence of variation among the isolates. Sporulation was not observed in the isolates SB-17, 19 and 20. This shows inability of the isolates for spore production on PDA and it also indicates less aggressiveness. The size of the conidia of 21 isolates varied from 15.3-126.0 µm X 6.3-36.1 um with 1-6 septa, colour varies from dark brown to olivaceous, Ovate to elliptical in shape and showed germination pattern was by unipolar or bipolar (Table 4). The shape and size of conidia are in agreement with findings of Hiremath¹⁰. Reddy and Biligrami¹⁷ recorded four types of conidial germination viz., unipolar, bipolar, intercalary and purcurrent in H. sativum. Studies of Aggarwal et al.² have shown that the conidia are slightly curved or sometimes straight, fusiform to broadly ellipsoidal, dark olivaceous brown, smooth, thick walled, 3-12 (mostly 6) pseudoseptate. They were about 40-120 µm long and 17-28 µm thick. Zillinsky²³ reported that under low magnification, conidia appeared black and shiny but under higher magnification they were dark olive brown. Earlier studies have also indicated a high level of morphopathological variability in the pathogen^{5,14}. Based on the reaction on differential hosts three pathogenic groups were identified which were different from groups formed based on morphological variations. The highly virulent isolates can be used for creating artificial epiphytotics while evaluating for resistance in the breeding programme. There was no correlation between the groups identified based on colony characterization and pathogenic variability. Variation and similarity within the species may be attributed to long term influence of weather conditions of location and ability of the pathogen to adapt varieties developed in a particular the

Pradeep and Kalappanavar situation⁴. The observations on pathogenic variability studies are in accordance with Singh and Singh²¹. Thus, it is clear that genotype PDW-314 has broad genetic base for resistance, whereas genotype A-9-30-1 and Bijaga Yellow has no gene for resistance. On the basis of aggressiveness of the isolates on differentials showing varied response to disease, the isolates of B. sorokiniana were classified into three groups as Highly, least Patil¹⁵ moderately and virulent. categorized isolates of E. hawaiiensis causing leaf blight of wheat in to three groups viz., highly virulent (Mahabaleshwar and Ugar Khurd), moderately virulent (Arabhavi, Dharwad and Sangankeri) and less Virulent (Kannur, Digraj and Pune). This fully support the present findings. Singh and Singh²¹ tested six wheat genotypes against six isolates of Bipolaris sorokiniana, the genotype BOW'S' showed resistance response against three isolates, namely, BS-D-1, BS-DWRK-2 and BS-K-4, whereas moderately resistance response against remaining 3 isolates i.e. BS-F-3, BS-P-5 and BS-V-6. The genotype A-9-30-1 showed almost highly susceptible response against each isolate except BS-D-1 which exhibited susceptible reaction on this genotype. Highly virulent isolates exhibited higher infection types on different differentials whereas, some less virulent isolates were unable to produce more infection or pathogenesis as that of virulent isolates. Thus, it clearly indicated the existence of different strains or pathotypes within B. sorokiniana. The results are in accordance with Hetzler et al.⁹ found differences in disease causing ability of different strains on a set of wheat genotypes, which was further confirmed by Maraite et al.¹² who reported on morphological variability.

CONCLUSION

The information on variability existing in this pathogen can be utilized by breeders and pathologists for resistance breeding. There is a need to identify or develop more genotypes resistance to disease as the pathogen exhibits high variability.

Acknowledgements

Author is very much grateful to the CIMMYT, Mexico for providing financial assistance under CSISA network project for conducting research.

REFERENCES

- Adlakha, K. L., Wilcoxson, R. D. and Raychaudhuri, S. P., Resistance of wheat to leaf spot caused by *Bipolaris sorokiniana*, *Plant Dis.* 68: 320-321 (1984).
- Aggarwal, R., Das, S., Singh D.V. and Srivastava, K. D., SEM studies on spore morphology and infection process of spot blotch pathogen in wheat, *Indian Phytopath.* 55 (2): 197-199 (2002).
- Aggarwal, R., Singh, V. B., Gurjar, M. S., Gupta, S. and Srinivas, P., Intraspecific variations in Indian isolates of *Bipolaris sorokiniana* infecting wheat base on morphological, pathogenic and molecular characters, *Indian Phytopath.* 62 (4): 449-460 (2009).
- Akram, M. and Singh, A., Variability and characterization of host response to *Helminthosporium sativum*, incitant of spot blotch of wheat, *Indian Phytopath.* 54 (4): 429-434 (2001).
- Chand, R., Pandey, S. P., Singh, H. V., Kumar, S. and Joshi, A. K., Variability and its probable cause in natural populations of spot blotch pathogen *Bipolaris sorokiniana* of wheat (*Triticum aestivum* L.) in India, *J. Plant. Dis. and Protec.* 110 (1): 27–35 (2003).
- Chauhan, A., Singh, A.V. and Singh, R., Cultural and pathogenic variability in *Bipoiaris sorokiniana* causing spot blotch of wheat in north India, *Indian Phytopath*. 60 (4): 472-477 (2007).
- Day, P. R., Genetics and Host Pathogen Interaction. A.W.H. Freeman and Company, San Francisco, CA, USA. 1974, p. 308.
- Guseva, N. N., Levitin, M. M. and Mikhailova, L. A., Genetic mechanisms of variability of phytopathogenic fungi. *Acta Phytopathol, Acad. Sci. Hung.* 14: 441-447 (1979).

- 9. Hetzler, J., Eyal, Z., Mehta, Y.R., Campos, L.A., Fehrmann, H., Kushnir, U., Zekaria-Oren, J. and Cohen, L., Interactions between spot blotch (Cochliobolus sativus) and wheat cultivars. In Wheat for nontraditional the warm areas: a proceedings of the International Conference July 29-August 3 1990 Foz do Iguacu, CIMMYT, Brazil. 1991, pp. 146-164.
- Hiremath, S. V., Studies on leaf blight of wheat caused by *Drechslera hawaiiensis* (Bugnicourt) Subram. and Jain Ex. M.B. Ellis. *M.Sc. (Agri.) Thesis*, Univ. Agri. Sci., Bangalore, 1985, pp. 64-66.
- Jaiswal, S. K., Sweta, Prasad, L. C., Sharma, S., Kumar, S., Prasad, R., Pandey, S. P., Chand, R. and Joshi, A. K., Identification of molecular marker and aggressiveness for different groups of *Bipolaris sorokiniana* isolates causing spot blotch disease in wheat (*Triticum aestivum* L.), *Curr. Micro.* 55: 135-141 (2007).
- Maraite, M., Di zinno, T., Longree, H., Daumerie and Duveiller, E., Fungi associated with foliar blight of wheat in warm areas. In : *Helminthosporium Blights of wheat :* Spot Blotch and Tan spot. (Eds. Duveiller, E., Dubin, H.J., Reeves, J. and McNab, A.), CIMMYT, Mexico City, Mexico, 1998, pp. 293-300.
- Munsell, Soil colour chart Ed. Munsell Colour Company. Inc. Baltimore, Maryland, USA. 1970, pp. 1-10.
- 14. Nelson, R. R., Evolution of sexuality and pathogenicity in interspecific crosses in the

genus *Helminthosporium*, *Phytopatholog*, **50:** 375-377 (1960).

 Patil, V. S., Epidemiology and Management of leaf blight of wheat caused by *Exserohilum hawaiiensis* (Bugnucourt) Subram. and Jain Ex. M.B. : 678-693 (2018) ISSN: 2320 – 7051 Ellis. *Ph. D. Thesis*, Univ. Agril. Sci., Dharwad, 2000, pp. 73-192.

- 16. Prasad, D., Singh, K. N. and Singh, A. K., Procedure for artificial induction of spot blotch in bread wheat and scale for its appraisal under field conditions, *Indian Phytopath.* 56(3): 355 (2003).
- Reddy, S. M. and Biligrami, K. S., Taxonomic studies on some non graminicolous *Helminthosporium*. In. *Proceedings of 56th Indian Science Congress*, p. 276 (1969).
- 18. Saari, E. E., Leaf blight disease and associated soil borne fungal pathogens of wheat in South and Southeast Asia. In: Duveiller E, Dubin HJ, Reeves J, McNab A (eds) Helminthosporium blights of Spot blotch and tan wheat: spot. CIMMYT, InProceedings of an International Workshop, El Batan Mexico, DF, 1998, pp. 37-51.
- Sharma, R. C. and Duveiller, E., Effect of Helminthosporium leaf blight on performance of timely and late-seeded wheat under optimal and stressed levels of soil fertility and moisture, *Field Crops Res.* 89: 205-221 (2004).
- Shoemaker, R.A., Nomenclalature of Drechlera and Bipolaris, grass parasites segregated from Helminthosporium, Can. J. Bot. 37: 879-887 (1959).
- Singh, U. P. and Singh, R., Molecular basis of resistance in wheat varieties against spot blotch disease, *J. Appl. and Nat. Sci.* 1 (2): 191-195 (2009).
- 22. Sivanesan, A. and Holliday, P., CMI Descriptions of pathogenic fungi and bacteria Set 71. Commonwealth Mycological Institute, Kew, UK, 1981, pp. 701-710.
- Zillinsky, F. J., Common diseases of small grain cereals-A guide to identification. CIMMYT, Mexico, p. 141 (1983).